Mastering machine learning algorithms : (Record no. 4987)

MARC details
000 -LEADER
fixed length control field 02189nam a2200217Ia 4500
003 - CONTROL NUMBER IDENTIFIER
control field NUBLRC
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 241210s9999 xx 000 0 und d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 978-1-83882-029-9
040 ## - CATALOGING SOURCE
Transcribing agency NUBLRC
050 ## - LIBRARY OF CONGRESS CALL NUMBER
Classification number GC Q 325 .B66 2020
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Bonaccorso, Giuseppe
245 #0 - TITLE STATEMENT
Title Mastering machine learning algorithms :
Remainder of title expert techniques for implementing popular machine learning algorithms, fine-tuning your models, and understanding how they work
Statement of responsibility, etc. Guiseppe Bonaccorso
250 ## - EDITION STATEMENT
Edition statement Second Edition.
260 ## - PUBLICATION, DISTRIBUTION, ETC.
Place of publication, distribution, etc. United Kingdom ;
Name of publisher, distributor, etc. Packt Publishing,
Date of publication, distribution, etc. c2020
300 ## - PHYSICAL DESCRIPTION
Extent xviii, 773 pages :
Other physical details illustrations ;
Dimensions 24cm.
365 ## - TRADE PRICE
Price amount USD 49.99
504 ## - BIBLIOGRAPHY, ETC. NOTE
Bibliography, etc. note Include index
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Chapter 1. Machine Learning Model Fundamentals -- Chapter 2. Loss functions and Regularization -- Chapter 3. Introduction to Semi-Supervised Learning -- Chapter 4. Advanced Semi-Supervised Classifiation -- Chapter 5. Graph-based Semi-Supervised Learning -- Chapter 6. Clustering and Unsupervised Models -- Chapter 7. Advanced Clustering and Unsupervised Models -- Chapter 8. Clustering and Unsupervised Models for Marketing -- Chapter 9. Generalized Linear Models and Regression -- Chapter 10. Introduction to Time-Series Analysis -- Chapter 11. Bayesian Networks and Hidden Markov Models -- Chapter 12. The EM Algorithm -- Chapter 13. Component Analysis and Dimensionality Reduction -- Chapter 14. Hebbian Learning -- Chapter 15. Fundamentals of Ensemble Learning -- Chapter 16. Advanced Boosting Algorithms -- Chapter 17. Modeling Neural Networks -- Chapter 18. Optimizing Neural Networks -- Chapter 19. Deep Convolutional Networks -- Chapter 20. Recurrent Neural Networks -- Chapter 21. Auto-Encoders -- Chpater 22. Introduction to Generative Adversarial Networks -- Chapter 23. Deep Belief Networks -- Chapter 24. Introduction to Reinforcement Learning -- Chapter 25. Advanced Policy Estimation Algorithms.
520 ## - SUMMARY, ETC.
Summary, etc. A new second edition of the bestselling guide to exploring and mastering the most important algorithms for solving complex machine learning problems, updated to include Python 3.8 and TensorFlow 2.x as well as the latest in new algorithms and techniques.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme Library of Congress Classification
Koha item type Books
Holdings
Withdrawn status Lost status Source of classification or shelving scheme Damaged status Not for loan Collection Home library Current library Shelving location Date acquired Source of acquisition Total checkouts Full call number Barcode Date last seen Price effective from Koha item type
    Library of Congress Classification     Information Technology NU BALIWAG NU BALIWAG General Circulation   Purchased - Amazon   GC Q 325 .B66 2020 NUBUL000004422 12/12/2024 12/12/2024 Books

© 2023 NU LIBRARY BALIWAG. All rights reserved. Privacy Policy I Powered by: KOHA