Journal of business & economic statistics.
Material type:
- 0735-0015
Item type | Current library | Home library | Collection | Shelving location | Call number | Copy number | Status | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|---|---|
![]() |
NU BALIWAG | NU BALIWAG | Serials | Serials | Journal of business & economic statistics. Volume 41, No. 4, October 2023 (Browse shelf(Opens below)) | c.1 | Not for loan | NUBJ/M000131 |
Browsing NU BALIWAG shelves, Shelving location: Serials, Collection: Serials Close shelf browser (Hides shelf browser)
No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | No cover image available | ||
Philippine journal of linguistics. Philippine journal of linguistics. | Journal of business & economic statistics. Volume 42, No. 2, April 2024 Journal of business & economic statistics. | Journal of business & economic statistics. Volume 42, No. 1, January 2024 Journal of business & economic statistics. | Journal of business & economic statistics. Volume 41, No. 4, October 2023 Journal of business & economic statistics. | Journal of business & economic statistics. Volume 41, No. 1, January 2023 Journal of business & economic statistics. | Journal of business & economic statistics. Volume 41, No. 2, April 2023 Journal of business & economic statistics. | Journal of business & economic statistics. Volume 41, No. 3, July 2023 Journal of business & economic statistics. |
Risk Preference Types, Limited Consideration, and Welfare.-- Context-Dependent Heterogeneous Preferences: A Comment on Barseghyan and Molinari (2023).-- Discussion of “Risk Preference Types, Limited Consideration, and Welfare” by Levon Barseghyan and Francesca Molinari.-- Discussion of “Risk Preference Types, Limited Consideration, and Welfare” by Levon Barseghyan and Francesca Molinari.-- Discussion of Levon Barseghyan and Francesca Molinari’s “Risk Preference Types, Limited Consideration, and Welfare” .-- Rejoinder.-- Spatial Correlation Robust Inference in Linear Regression and Panel Models.-- Synthetic Control with Time Varying Coefficients A State Space Approach with Bayesian Shrinkage.-- Identification of SVAR Models by Combining Sign Restrictions With External Instruments.-- Robust Covariance Matrix Estimation for High-Dimensional Compositional Data with Application to Sales Data Analysis.-- Specification Testing of Regression Models with Mixed Discrete and Continuous Predictors.-- Bagged Pretested Portfolio Selection.-- LASSO for Stochastic Frontier Models with Many Efficient Firms.-- Procurements with Bidder Asymmetry in Cost and Risk-Aversion.-- Nonparametric Prediction Distribution from Resolution-Wise Regression with Heterogeneous Data.-- Nonparametric Option Pricing with Generalized Entropic Estimator.-- When are Google Data Useful to Nowcast GDP? An Approach via Preselection and Shrinkage.-- Consistent Estimation of Distribution Functions under Increasing Concave and Convex Stochastic Ordering.-- Overnight GARCH-Itô Volatility Models.-- A Scalable Frequentist Model Averaging Method.-- Nonparametric Quantile Regression for Homogeneity Pursuit in Panel Data Models.-- Optimal Model Averaging of Mixed-Data Kernel-Weighted Spline Regressions.-- Testing Stability in Functional Event Observations with an Application to IPO Performance.-- Extremal Dependence-Based Specification Testing of Time Series.-- Corporate Probability of Default: A Single-Index Hazard Model Approach.-- Changepoint Detection in Heteroscedastic Random Coefficient Autoregressive Models.-- Generalized Covariance Estimator.-- Teacher-to-Classroom Assignment and Student Achievement.-- Identifying Structural Vector Autoregression via Leptokurtic Economic Shocks.-- Fast Variational Bayes Methods for Multinomial Probit Models.-- Spectral Estimation of Large Stochastic Blockmodels with Discrete Nodal Covariates.-- From Conditional Quantile Regression to Marginal Quantile Estimation with Applications to Missing Data and Causal Inference.-- Nonparametric, Stochastic Frontier Models with Multiple Inputs and Outputs.
We provide sufficient conditions for semi-nonparametric point identification of a mixture model of decision making under risk, when agents make choices in multiple lines of insurance coverage (contexts) by purchasing a bundle. As a first departure from the related literature, the model allows for two preference types. In the first one, agents behave according to standard expected utility theory with CARA Bernoulli utility function, with an agent-specific coefficient of absolute risk aversion whose distribution is left completely unspecified. In the other, agents behave according to the dual theory of choice under risk combined with a one-parameter family distortion function, where the parameter is agent-specific and is drawn from a distribution that is left completely unspecified. Within each preference type, the model allows for unobserved heterogeneity in consideration sets, where the latter form at the bundle level—a second departure from the related literature. Our point identification result rests on observing sufficient variation in covariates across contexts, without requiring any independent variation across alternatives within a single context. We estimate the model on data on households’ deductible choices in two lines of property insurance, and use the results to assess the welfare implications of a hypothetical market intervention where the two lines of insurance are combined into a single one. We study the role of limited consideration in mediating the welfare effects of such intervention.
Barseghyan and Molinari give sufficient conditions for semi-nonparametric point identification of parameters of interest in a mixture model of decision-making under risk, allowing for unobserved heterogeneity in utility functions and limited consideration. A key assumption in the model is that the heterogeneity of risk preferences is unobservable but context-independent. In this comment, we build on their insights and present identification results in a setting where the risk preferences are allowed to be context-dependent.
We consider inference about a scalar coefficient in a linear regression with spatially correlated errors. Recent suggestions for more robust inference require stationarity of both regressors and dependent variables for their large sample validity. This rules out many empirically relevant applications, such as difference-in-difference designs. We develop a robustified version of the recently suggested SCPC method that addresses this challenge. We find that the method has good size properties in a wide range of Monte Carlo designs that are calibrated to real world applications, both in a pure cross sectional setting, but also for spatially correlated panel data. We provide numerically efficient methods for computing the associated spatial-correlation robust test statistics, critical values, and confidence intervals.
Synthetic control methods are a popular tool for measuring the effects of policy interventions on a single treated unit. In practice, researchers create a counterfactual using a linear combination of untreated units that closely mimic the treated unit. Oftentimes, creating a synthetic control is not possible due to untreated units’ dynamic characteristics such as integrated processes or a time varying relationship. These are cases in which viewing the counterfactual estimation problem as a cross-sectional one fails. In this article, I investigate a new approach to estimate the synthetic control counterfactual incorporating time varying parameters to handle such situations. This is done using a state space framework and Bayesian shrinkage. The dynamics allow for a closer pretreatment fit leading to a more accurate counterfactual estimate. Monte Carlo simulations are performed showcasing the usefulness of the proposed model in a synthetic control setting. I then compare the proposed model to existing approaches in a classic synthetic control case study.
We discuss combining sign restrictions with information in external instruments (proxy variables) to identify structural vector autoregressive (SVAR) models. In one setting, we assume the availability of valid external instruments. Sign restrictions may then be used to identify further orthogonal shocks, or as an additional piece of information to pin down the shocks identified by the external instruments more precisely. In a second setting, we assume that proxy variables are only “plausibly exogenous” and suggest various types of inequality restrictions to bound the relation between structural shocks and the external variable. This can be combined with conventional sign restrictions to further narrow down the set of admissible models. Within a proxy-augmented SVAR, we conduct Bayesian inference and discuss computation of Bayes factors. They can be useful to test either the sign- or IV restrictions as overidentifying. We illustrate the usefulness of our methodology in estimating the effects of oil supply and monetary policy shocks.
Compositional data arises in a wide variety of research areas when some form of standardization and composition is necessary. Estimating covariance matrices is of fundamental importance for high-dimensional compositional data analysis. However, existing methods require the restrictive Gaussian or sub-Gaussian assumption, which may not hold in practice. We propose a robust composition adjusted thresholding covariance procedure based on Huber-type M-estimation to estimate the sparse covariance structure of high-dimensional compositional data. We introduce a cross-validation procedure to choose the tuning parameters of the proposed method. Theoretically, by assuming a bounded fourth moment condition, we obtain the rates of convergence and signal recovery property for the proposed method and provide the theoretical guarantees for the cross-validation procedure under the high-dimensional setting. Numerically, we demonstrate the effectiveness of the proposed method in simulation studies and also a real application to sales data analysis.
This article proposes a nonparametric projection-based adaptive-to-model specification test for regressions with discrete and continuous predictors. The test statistic is asymptotically normal under the null hypothesis and omnibus against alternative hypotheses. The test behaves like a locally smoothing test as if the number of continuous predictors was one and can detect the local alternative hypotheses distinct from the null hypothesis at the rate that can be achieved by existing locally smoothing tests for regressions with only one continuous predictor. Because of the model adaptation property, the test can fully use the model structure under the null hypothesis so that the dimensionality problem can be significantly alleviated. A discretization-expectation ordinary least squares estimation approach for partial central subspace in sufficient dimension reduction is developed as a by-product in the test construction. We suggest a residual-based wild bootstrap method to give an approximation by fully using the null model and thus closer to the limiting null distribution than existing bootstrap approximations. We conduct simulation studies to compare it with existing tests and two real data examples for illustration.
This article exploits the idea of combining pretesting and bagging to choose between competing portfolio strategies. We propose an estimator for the portfolio weight vector, which optimally trades off Type I against Type II errors when choosing the best investment strategy. Furthermore, we accommodate the idea of bagging in the portfolio testing problem, which helps to avoid sharp thresholding and reduces turnover costs substantially. Our Bagged Pretested Portfolio Selection (BPPS) approach borrows from both the shrinkage and the forecast combination literature. The portfolio weights of our strategy are weighted averages of the portfolio weights from a set of stand-alone strategies. More specifically, the weights are generated from pseudo-out-of-sample portfolio pretesting, such that they reflect the probability that a given strategy will be overall best performing. The resulting strategy allows for a flexible and smooth switch between the underlying strategies and outperforms the corresponding stand-alone strategies. Besides yielding high point estimates of the portfolio performance measures, the BPPS approach performs exceptionally well in terms of precision and is robust against outliers resulting from the choice of the asset space.
We apply the adaptive LASSO to select a set of maximally efficient firms in the panel fixed-effect stochastic frontier model. The adaptively weighted L1 penalty with sign restrictions allows simultaneous selection of a group of maximally efficient firms and estimation of firm-level inefficiency parameters with a faster rate of convergence than least squares dummy variable estimators. Our estimator possesses the oracle property. We propose a tuning parameter selection criterion and an efficient optimization algorithm based on coordinate descent. We apply the method to estimate a group of efficient police officers who are best at detecting contraband in motor vehicle stops (i.e., search efficiency) in Syracuse, NY.
We propose an empirical method to analyze data from first-price procurements where bidders are asymmetric in their risk-aversion (CRRA) coefficients and distributions of private costs. Our Bayesian approach evaluates the likelihood by solving type-symmetric equilibria using the boundary-value method and integrates out unobserved heterogeneity through data augmentation. We study a new dataset from Russian government procurements focusing on the category of printing papers. We find that there is no unobserved heterogeneity (presumably because the job is routine), but bidders are highly asymmetric in their cost and risk-aversion. Our counterfactual study shows that choosing a type-specific cost-minimizing reserve price marginally reduces the procurement cost; however, inviting one more bidder substantially reduces the cost, by at least 5.5%. Furthermore, incorrectly imposing risk-neutrality would severely mislead inference and policy recommendations, but the bias from imposing homogeneity in risk-aversion is small.
Modeling and inference for heterogeneous data have gained great interest recently due to rapid developments in personalized marketing. Most existing regression approaches are based on the conditional mean and may require additional cluster information to accommodate data heterogeneity. In this article, we propose a novel nonparametric resolution-wise regression procedure to provide an estimated distribution of the response instead of one single value. We achieve this by decomposing the information of the response and the predictors into resolutions and patterns, respectively, based on marginal binary expansions. The relationships between resolutions and patterns are modeled by penalized logistic regressions. Combining the resolution-wise prediction, we deliver a histogram of the conditional response to approximate the distribution. Moreover, we show a sure independence screening property and the consistency of the proposed method for growing dimensions. Simulations and a real estate valuation dataset further illustrate the effectiveness of the proposed method.
We propose a family of nonparametric estimators for an option price that require only the use of underlying return data, but can also easily incorporate information from observed option prices. Each estimator comes from a risk-neutral measure minimizing generalized entropy according to a different Cressie–Read discrepancy. We apply our method to price S&P 500 options and the cross-section of individual equity options, using distinct amounts of option data in the estimation. Estimators incorporating mild nonlinearities produce optimal pricing accuracy within the Cressie–Read family and outperform several benchmarks such as Black–Scholes and different GARCH option pricing models. Overall, we provide a powerful option pricing technique suitable for scenarios of limited option data availability.
Alternative datasets are widely used for macroeconomic nowcasting together with machine learning–based tools. The latter are often applied without a complete picture of their theoretical nowcasting properties. Against this background, this article proposes a theoretically grounded nowcasting methodology that allows researchers to incorporate alternative Google Search Data (GSD) among the predictors and that combines targeted preselection, Ridge regularization, and Generalized Cross Validation. Breaking with most existing literature, which focuses on asymptotic in-sample theoretical properties, we establish the theoretical out-of-sample properties of our methodology and support them by Monte Carlo simulations. We apply our methodology to GSD to nowcast GDP growth rate of several countries during various economic periods. Our empirical findings support the idea that GSD tend to increase nowcasting accuracy, even after controlling for official variables, but that the gain differs between periods of recessions and of macroeconomic stability.
A random variable Y1 is said to be smaller than Y2 in the increasing concave stochastic order if
E
[
ϕ
(
Y
1
)
]
≤
E
[
ϕ
(
Y
2
)
]
for all increasing concave functions
ϕ
for which the expected values exist, and smaller than Y2 in the increasing convex order if
E
[
ψ
(
Y
1
)
]
≤
E
[
ψ
(
Y
2
)
]
for all increasing convex ψ. This article develops nonparametric estimators for the conditional cumulative distribution functions
F
x
(
y
)
=
ℙ
(
Y
≤
y
|
X
=
x
)
of a response variable Y given a covariate X, solely under the assumption that the conditional distributions are increasing in x in the increasing concave or increasing convex order. Uniform consistency and rates of convergence are established both for the K-sample case
X
∈
{
1
,
…
,
K
}
and for continuously distributed X.
Various parametric volatility models for financial data have been developed to incorporate high-frequency realized volatilities and better capture market dynamics. However, because high-frequency trading data are not available during the close-to-open period, the volatility models often ignore volatility information over the close-to-open period and thus may suffer from loss of important information relevant to market dynamics. In this article, to account for whole-day market dynamics, we propose an overnight volatility model based on Itô diffusions to accommodate two different instantaneous volatility processes for the open-to-close and close-to-open periods. We develop a weighted least squares method to estimate model parameters for two different periods and investigate its asymptotic properties.
Frequentist model averaging is an effective technique to handle model uncertainty. However, calculation of the weights for averaging is extremely difficult, if not impossible, even when the dimension of the predictor vector, p, is moderate, because we may have
2
p
candidate models. The exponential size of the candidate model set makes it difficult to estimate all candidate models, and brings additional numeric errors when calculating the weights. This article proposes a scalable frequentist model averaging method, which is statistically and computationally efficient, to overcome this problem by transforming the original model using the singular value decomposition. The method enables us to find the optimal weights by considering at most p candidate models. We prove that the minimum loss of the scalable model averaging estimator is asymptotically equal to that of the traditional model averaging estimator. We apply the Mallows and Jackknife criteria to the scalable model averaging estimator and prove that they are asymptotically optimal estimators. We further extend the method to the high-dimensional case (i.e.,
p
≥
n
). Numerical studies illustrate the superiority of the proposed method in terms of both statistical efficiency and computational cost.
Many panel data have the latent subgroup effect on individuals, and it is important to correctly identify these groups since the efficiency of resulting estimators can be improved significantly by pooling the information of individuals within each group. However, the currently assumed parametric and semiparametric relationship between the response and predictors may be misspecified, which leads to a wrong grouping result, and the nonparametric approach hence can be considered to avoid such mistakes. Moreover, the response may depend on predictors in different ways at various quantile levels, and the corresponding grouping structure may also vary. To tackle these problems, this article proposes a nonparametric quantile regression method for homogeneity pursuit in panel data models with individual effects, and a pairwise fused penalty is used to automatically select the number of groups. The asymptotic properties are established, and an ADMM algorithm is also developed. The finite sample performance is evaluated by simulation experiments, and the usefulness of the proposed methodology is further illustrated by an empirical example.
Model averaging has a rich history dating from its use for combining forecasts from time-series models (Bates and Granger) and presents a compelling alternative to model selection methods. We propose a frequentist model averaging procedure defined over categorical regression splines (Ma, Racine, and Yang) that allows for mixed-data predictors, as well as nonnested and heteroscedastic candidate models. We demonstrate the asymptotic optimality of the proposed model averaging estimator, and develop a post-averaging inference theory for it. Theoretical underpinnings are provided, finite-sample performance is evaluated, and an empirical illustration reveals that the method is capable of outperforming a range of popular model selection criteria in applied settings. An R package is available for practitioners (Racine).
Many sequentially observed functional data objects are available only at the times of certain events. For example, the trajectory of stock prices of companies after their initial public offering (IPO) can be observed when the offering occurs, and the resulting data may be affected by changing circumstances. It is of interest to investigate whether the mean behavior of such functions is stable over time, and if not, to estimate the times at which apparent changes occur. Since the frequency of events may fluctuates over time, we propose a change point analysis that has two steps. In the first step, we segment the series into segments in which the frequency of events is approximately homogeneous using a new binary segmentation procedure for event frequencies. After adjusting the observed curves in each segment based on the frequency of events, we proceed in the second step by developing a method to test for and estimate change points in the mean of the observed functional data objects. We establish the consistency and asymptotic distribution of the change point detector and estimator in both steps, and study their performance using Monte Carlo simulations. An application to IPO performance data illustrates the proposed methods.
We propose a specification test for conditional location–scale models based on extremal dependence properties of the standardized residuals. We do so comparing the left-over serial extremal dependence—as measured by the pre-asymptotic tail copula—with that arising under serial independence at different lags. Our main theoretical results show that the proposed Portmanteau-type test statistics have nuisance parameter-free asymptotic limits. The test statistics are easy to compute, as they only depend on the standardized residuals, and critical values are likewise easily obtained from the limiting distributions. This contrasts with some extant tests (based, e.g., on autocorrelations of squared residuals), where test statistics depend on the parameter estimator of the model and critical values may need to be bootstrapped. We show that our tests perform well in simulations. An empirical application to S&P 500 constituents illustrates that our tests can uncover violations of residual serial independence that are not picked up by standard autocorrelation-based specification tests, yet are relevant when the model is used for, for example, risk forecasting.
Corporate probability of default (PD) prediction is vitally important for risk management and asset pricing. In search of accurate PD prediction, we propose a flexible yet easy-to-interpret default-prediction single-index hazard model (DSI). By applying it to a comprehensive U.S. corporate bankruptcy database we constructed, we discover an interesting V-shaped relationship, indicating a violation of the common linear hazard specification. Most importantly, the single-index hazard model passes the Hosmer-Lemeshow goodness-of-fit calibration test while neither does a state-of-the-art linear hazard model in finance nor a parametric class of Box-Cox transformation survival models. In an economic value analysis, we find that this may translate to as much as three times of profit compared to the linear hazard model. In model estimation, we adopt a penalized-spline approximation for the unknown function and propose an efficient algorithm. With a diverging number of spline knots, we establish consistency and asymptotic theories for the penalized-spline likelihood estimators. Furthermore, we reexamine the distress risk anomaly, that is, higher financially distressed stocks deliver anomalously lower excess returns. Based on the PDs from the proposed single-index hazard model, we find that the distress risk anomaly has weakened or even disappeared during the extended period.
We propose a family of CUSUM-based statistics to detect the presence of changepoints in the deterministic part of the autoregressive parameter in a Random Coefficient Autoregressive (RCA) sequence. Our tests can be applied irrespective of whether the sequence is stationary or not, and no prior knowledge of stationarity or lack thereof is required. Similarly, our tests can be applied even when the error term and the stochastic part of the autoregressive coefficient are non iid, covering the cases of conditional volatility and shifts in the variance, again without requiring any prior knowledge as to the presence or type thereof. In order to ensure the ability to detect breaks at sample endpoints, we propose weighted CUSUM statistics, deriving the asymptotics for virtually all possible weighing schemes, including the standardized CUSUM process (for which we derive a Darling-Erdős theorem) and even heavier weights (so-called Rényi statistics). Simulations show that our procedures work very well in finite samples. We complement our theory with an application to several financial time series.
We consider a class of semi-parametric dynamic models with iid errors, including the nonlinear mixed causal-noncausal Vector Autoregressive (VAR), Double-Autoregressive (DAR) and stochastic volatility models. To estimate the parameters characterizing the (nonlinear) serial dependence, we introduce a generic Generalized Covariance (GCov) estimator, which minimizes a residual-based multivariate portmanteau statistic. In comparison to the standard methods of moments, the GCov estimator has an interpretable objective function, circumvents the inversion of high-dimensional matrices, and achieves semi-parametric efficiency in one step. We derive the asymptotic properties of the GCov estimator and show its semi-parametric efficiency. We also prove that the associated residual-based portmanteau statistic is asymptotically chi-square distributed. The finite sample performance of the GCov estimator is illustrated in a simulation study. The estimator is then applied to a dynamic model of commodity futures.
We study the effects of counterfactual teacher-to-classroom assignments on average student achievement in U.S. elementary and middle schools. We use the Measures of Effective Teaching (MET) experiment to semiparametrically identify the average reallocation effects (AREs) of such assignments. Our identification strategy exploits the random assignment of teachers to classrooms in MET schools. To account for noncompliance of some students and teachers to the random assignment, we develop and implement a semiparametric instrumental variables estimator. We find that changes in within-district teacher assignments could have appreciable effects on student achievement. Unlike policies that aim at changing the pool of teachers (e.g., teacher tenure policies or class-size reduction measures), alternative teacher-to-classroom assignments do not require that districts hire new teachers or lay off existing ones; they raise student achievement through a more efficient deployment of existing teachers.
We revisit the generalized method of moments (GMM) estimation of the non-Gaussian structural vector autoregressive (SVAR) model. It is shown that in the n-dimensional SVAR model, global and local identification of the contemporaneous impact matrix is achieved with as few as
n
2
+
n
(
n
−
1
)
/
2
suitably selected moment conditions, when at least n – 1 of the structural errors are all leptokurtic (or platykurtic). We also relax the potentially problematic assumption of mutually independent structural errors in part of the previous literature to the requirement that the errors be mutually uncorrelated. Moreover, we assume the error term to be only serially uncorrelated, not independent in time, which allows for univariate conditional heteroscedasticity in its components. A small simulation experiment highlights the good properties of the estimator and the proposed moment selection procedure. The use of the methods is illustrated by means of an empirical application to the effect of a tax increase on U.S. gasoline consumption and carbon dioxide emissions.
The multinomial probit model is often used to analyze choice behavior. However, estimation with existing Markov chain Monte Carlo (MCMC) methods is computationally costly, which limits its applicability to large choice datasets. This article proposes a variational Bayes method that is accurate and fast, even when a large number of choice alternatives and observations are considered. Variational methods usually require an analytical expression for the unnormalized posterior density and an adequate choice of variational family. Both are challenging to specify in a multinomial probit, which has a posterior that requires identifying restrictions and is augmented with a large set of latent utilities. We employ a spherical transformation on the covariance matrix of the latent utilities to construct an unnormalized augmented posterior that identifies the parameters, and use the conditional posterior of the latent utilities as part of the variational family. The proposed method is faster than MCMC, and can be made scalable to both a large number of choice alternatives and a large number of observations. The accuracy and scalability of our method is illustrated in numerical experiments and real purchase data with one million observations.
In many applications of network analysis, it is important to distinguish between observed and unobserved factors affecting network structure. We show that a network model with discrete unobserved link heterogeneity and binary (or discrete) covariates corresponds to a stochastic blockmodel (SBM). We develop a spectral estimator for the effect of covariates on link probabilities, exploiting the correspondence of SBMs and generalized random dot product graphs (GRDPG). We show that computing our estimator is much faster than standard variational expectation–maximization algorithms and scales well for large networks. Monte Carlo experiments suggest that the estimator performs well under different data generating processes. Our application to Facebook data shows evidence of homophily in gender, role and campus-residence, while allowing us to discover unobserved communities. Finally, we establish asymptotic normality of our estimators.
It is well known that information on the conditional distribution of an outcome variable given covariates can be used to obtain an enhanced estimate of the marginal outcome distribution. This can be done easily by integrating out the marginal covariate distribution from the conditional outcome distribution. However, to date, no analogy has been established between marginal quantile and conditional quantile regression. This article provides a link between them. We propose two novel marginal quantile and marginal mean estimation approaches through conditional quantile regression when some of the outcomes are missing at random. The first of these approaches is free from the need to choose a propensity score. The second is double robust to model misspecification: it is consistent if either the conditional quantile regression model is correctly specified or the missing mechanism of outcome is correctly specified. Consistency and asymptotic normality of the two estimators are established, and the second double robust estimator achieves the semiparametric efficiency bound. Extensive simulation studies are performed to demonstrate the utility of the proposed approaches. An application to causal inference is introduced. For illustration, we apply the proposed methods to a job training program dataset.
Stochastic frontier models along the lines of Aigner et al. are widely used to benchmark firms’ performances in terms of efficiency. The models are typically fully parametric, with functional form specifications for the frontier as well as both the noise and the inefficiency processes. Studies such as Kumbhakar et al. have attempted to relax some of the restrictions in parametric models, but so far all such approaches are limited to a univariate response variable. Some (e.g., Simar and Zelenyuk; Kuosmanen and Johnson) have proposed nonparametric estimation of directional distance functions to handle multiple inputs and outputs, raising issues of endogeneity that are either ignored or addressed by imposing restrictive and implausible assumptions. This article extends nonparametric methods developed by Simar et al. and Hafner et al. to allow multiple inputs and outputs in an almost fully nonparametric framework while avoiding endogeneity problems. We discuss properties of the resulting estimators, and examine their finite-sample performance through Monte Carlo experiments. Practical implementation of the method is illustrated using data on U.S. commercial banks.
There are no comments on this title.